26

Re: Ramps 1.4 with LCD and SD support

You got it, basically there are a few different ways to do it.
I personally am not a fan of auto leveling in a situation where it is compensating for a poor mechanical platform.  It is my understanding that the press has very little opportunities to create a mechanism to actually level the build plate.

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

27

Re: Ramps 1.4 with LCD and SD support

OK I will try that. I think you missed the post before this one so Ill just repost it:
Here is the update:
I hooked the endstops up the way you said, and configured R-H to connect, both worked well.
I reset the firmware back to the link firmware. Configured MoBo 33 and the few settings I needed. Load firmware.
X or Y will home and stop at switch but wont move after that unless I reset the power. I did noticed that I can hear a very slight tapping sound coming from which ever stepper went home. I still can not get the Extruder or the Z axis to move, I thought maybe the driver was dead so I swapped the driver from Y to Z and Z still doesn't move and Y does. I swapped the z and extruder connector to the x and Y driver connectors and they both work. Its as if there is no instructions for Z and extruder to work? Would it help if I put my config h up here for you to see?

28

Re: Ramps 1.4 with LCD and SD support

Yep sounds like maybe we have a slight z logic issue and that tapping could be low VREF as the motor attempts to move against that endstop that isn't doing things properly.  We'll figure it out.

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

29

Re: Ramps 1.4 with LCD and SD support

I have the stepper drivers at the voltage that the original press stepper motors required. But maybe they need to be different. As I said before this is pretty new to me.
Here is the config_h sketch. I do have the lcd included as I was using that to control it before I got R-H to connect.





#ifndef CONFIGURATION_H
#define CONFIGURATION_H

// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration

//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/delta directory.
//

// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
#define STRING_CONFIG_H_AUTHOR "Adrian/Lawsy/Rincewind/Tealvince" // Who made the changes.

// change to 3 for SD3 //{SD Patch}
#define SOLIDOODLE_VERSION 3 //{SD Patch}

// Enable support for either of the Z-Wobble Solutions
//#define ZWOBBLE_PATCH //{SD Patch} (+5528 Bytes)
//#define HYSTERESIS_PATCH //{SD Patch}(+1592 Bytes)

// SERIAL_PORT selects which serial port should be used for communication with the host.
// This allows the connection of wireless adapters (for instance) to non-default port pins.
// Serial port 0 is still used by the Arduino bootloader regardless of this setting.
#define SERIAL_PORT 0

// This determines the communication speed of the printer
// This determines the communication speed of the printer
#define BAUDRATE 250000

// This enables the serial port associated to the Bluetooth interface
//#define BTENABLED              // Enable BT interface on AT90USB devices


//// The following define selects which electronics board you have. Please choose the one that matches your setup
// 10 = Gen7 custom (Alfons3 Version) "https://github.com/Alfons3/Generation_7_Electronics"
// 11 = Gen7 v1.1, v1.2 = 11
// 12 = Gen7 v1.3
// 13 = Gen7 v1.4
// 2  = Cheaptronic v1.0
// 20 = Sethi 3D_1
// 3  = MEGA/RAMPS up to 1.2 = 3
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
// 35 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan)
// 4  = Duemilanove w/ ATMega328P pin assignment
// 5  = Gen6
// 51 = Gen6 deluxe
// 6  = Sanguinololu < 1.2
// 62 = Sanguinololu 1.2 and above
// 63 = Melzi
// 64 = STB V1.1
// 65 = Azteeg X1
// 66 = Melzi with ATmega1284 (MaKr3d version)
// 67 = Azteeg X3
// 68 = Azteeg X3 Pro
// 7  = Ultimaker
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
// 72 = Ultimainboard 2.x (Uses TEMP_SENSOR 20)
// 77 = 3Drag Controller
// 8  = Teensylu
// 80 = Rumba
// 81 = Printrboard (AT90USB1286)
// 82 = Brainwave (AT90USB646)
// 83 = SAV Mk-I (AT90USB1286)
// 84 = Teensy++2.0 (AT90USB1286) // CLI compile: DEFINES=AT90USBxx_TEENSYPP_ASSIGNMENTS HARDWARE_MOTHERBOARD=84  make
// 9  = Gen3+
// 70 = Megatronics
// 701= Megatronics v2.0
// 702= Minitronics v1.0
// 90 = Alpha OMCA board
// 91 = Final OMCA board
// 301= Rambo
// 21 = Elefu Ra Board (v3)
// 88 = 5DPrint D8 Driver Board

// Original Solidoodle w/ Sanguinololu shipped pre June 2013 - Choose 62
// Solidoodle w/ Printrboard shipped post June 2013 - Choose 81
#ifndef MOTHERBOARD
#define MOTHERBOARD 33
#endif

// Define this to set a custom name for your generic Mendel,
// #define CUSTOM_MENDEL_NAME "This Mendel"

// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
// #define MACHINE_UUID "00000000-0000-0000-0000-000000000000"

// This defines the number of extruders
#define EXTRUDERS 1

//// The following define selects which power supply you have. Please choose the one that matches your setup
// 1 = ATX
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)

#define POWER_SUPPLY 1

// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
// #define PS_DEFAULT_OFF

//===========================================================================
//=============================Thermal Settings  ============================
//===========================================================================
//
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
//
//// Temperature sensor settings:
// -2 is thermocouple with MAX6675 (only for sensor 0)
// -1 is thermocouple with AD595
// 0 is not used
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is Mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 11 is 100k beta 3950 1% thermistor (4.7k pullup)
// 12 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
// 20 is the PT100 circuit found in the Ultimainboard V2.x
// 60 is 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
//
//    1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
//                          (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
//
// 1047 is Pt1000 with 4k7 pullup
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 70 is 500C thermistor for Pico hot end

#define TEMP_SENSOR_0 1        //{SD Patch}
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_BED 1    //{SD Patch}

// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10

// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10

// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 5  // (seconds) {SD Patch}
#define TEMP_HYSTERESIS 3       // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW     1       // (degC) Window around target to start the residency timer x degC early.

// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define BED_MINTEMP 5

// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 300    //{SD Patch}
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define BED_MAXTEMP 150    //{SD Patch}

// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
// average current. The value should be an integer and the heat bed will be turned on for 1 interval of
// HEATER_BED_DUTY_CYCLE_DIVIDER intervals.
//#define HEATER_BED_DUTY_CYCLE_DIVIDER 4

// If you want the M105 heater power reported in watts, define the BED_WATTS, and (shared for all extruders) EXTRUDER_WATTS
//#define EXTRUDER_WATTS (12.0*12.0/6.7) //  P=I^2/R
//#define BED_WATTS (12.0*12.0/1.1)      // P=I^2/R

// PID settings:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
  //#define PID_DEBUG // Sends debug data to the serial port.
  //#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
  #define PID_FUNCTIONAL_RANGE 30 // If the temperature difference between the target temperature and the actual temperature
                                  // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
  #define PID_INTEGRAL_DRIVE_MAX 255  //limit for the integral term
  #define K1 0.95 //smoothing factor within the PID
  #define PID_dT ((OVERSAMPLENR * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine

// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
//    #define  DEFAULT_Kp 22.2
//    #define  DEFAULT_Ki 1.08
//    #define  DEFAULT_Kd 114
//
// Solidoodle
    #define  DEFAULT_Kp 15.44
    #define  DEFAULT_Ki 0.51
    #define  DEFAULT_Kd 116.62
//
// MakerGear
//    #define  DEFAULT_Kp 7.0
//    #define  DEFAULT_Ki 0.1
//    #define  DEFAULT_Kd 12

// Mendel Parts V9 on 12V
//    #define  DEFAULT_Kp 63.0
//    #define  DEFAULT_Ki 2.25
//    #define  DEFAULT_Kd 440
#endif // PIDTEMP

// Bed Temperature Control
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//
//#define BED_LIMIT_SWITCHING

// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed.  (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current

#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
//    #define  DEFAULT_bedKp 10.00
//    #define  DEFAULT_bedKi .023
//    #define  DEFAULT_bedKd 305.4

//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
//    #define  DEFAULT_bedKp 97.1
//    #define  DEFAULT_bedKi 1.41
//    #define  DEFAULT_bedKd 1675.16
//Solidoodle3 Standard Bed //{SD Patch}
//from pidautotune //{SD Patch}
   // #define  DEFAULT_bedKp 100.15 //{SD Patch}
   //#define  DEFAULT_bedKi 7.65 //{SD Patch}
   //#define  DEFAULT_bedKd 327.90 //{SD Patch}

//Replicator MK2B Heat Bed //{SD Patch}
//from pidautotune //{SD Patch}
    #define  DEFAULT_bedKp 367.89 //{SD Patch}
    #define  DEFAULT_bedKi 36.68 //{SD Patch}
    #define  DEFAULT_bedKd 922.06 //{SD Patch}

//QU-BD Silicone Bed 200x200 Square //{SD Patch}
//from pidautotune //{SD Patch}
//    #define  DEFAULT_bedKp 304.87 //{SD Patch}
//    #define  DEFAULT_bedKi 47.49 //{SD Patch}
//    #define  DEFAULT_bedKd 489.67 //{SD Patch}


// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED



//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by
#define PREVENT_DANGEROUS_EXTRUDE
//if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.
#define PREVENT_LENGTHY_EXTRUDE

#define EXTRUDE_MINTEMP 145    //{SD Patch}
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.

/*================== Thermal Runaway Protection ==============================
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).

The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.

After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).

If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.

Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.

*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:

// Parameters for all extruder heaters
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius

// If you want to enable this feature for your bed heater,
// uncomment the 2 defines below:

// Parameters for the bed heater
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius
//===========================================================================


//===========================================================================
//=============================Mechanical Settings===========================
//===========================================================================

// Uncomment the following line to enable CoreXY kinematics
// #define COREXY

// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors

#ifndef ENDSTOPPULLUPS
  // fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined
  // #define ENDSTOPPULLUP_XMAX
  // #define ENDSTOPPULLUP_YMAX
  // #define ENDSTOPPULLUP_ZMAX
  // #define ENDSTOPPULLUP_XMIN
  // #define ENDSTOPPULLUP_YMIN
  // #define ENDSTOPPULLUP_ZMIN
#endif

#ifdef ENDSTOPPULLUPS
  #define ENDSTOPPULLUP_XMAX
  #define ENDSTOPPULLUP_YMAX
  #define ENDSTOPPULLUP_ZMAX
  #define ENDSTOPPULLUP_XMIN
  #define ENDSTOPPULLUP_YMIN
  #define ENDSTOPPULLUP_ZMIN
#endif

// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. {SD Patch}
const bool Y_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. {SD Patch}
const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. {SD Patch}
const bool X_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. {SD Patch}
const bool Y_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. {SD Patch}
const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop. {SD Patch}
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS

// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
  #define DISABLE_MAX_ENDSTOPS
#endif

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders

// Disables axis when it's not being used.
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
#define DISABLE_E false // For all extruders
#define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled

#define INVERT_X_DIR true    // for Mendel set to false, for Orca set to true {SD Patch}
#define INVERT_Y_DIR false    // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR false     // for Mendel set to false, for Orca set to true {SD Patch}
#define INVERT_E0_DIR true   // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false    // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false   // for direct drive extruder v9 set to true, for geared extruder set to false

// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
#define X_HOME_DIR 1
#define Y_HOME_DIR 1
#define Z_HOME_DIR -1

#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS. {SD Patch}
#define max_software_endstops true  // If true, axis won't move to coordinates greater than the defined lengths below. {SD Patch}

#define X_MAX_POS 203
#define X_MIN_POS 0
#define Y_MAX_POS 200
#define Y_MIN_POS 0
#define Z_MAX_POS 200
#define Z_MIN_POS 0

#define X_MAX_LENGTH (X_MAX_POS - X_MIN_POS)
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
//============================= Bed Auto Leveling ===========================
//define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)

#ifdef ENABLE_AUTO_BED_LEVELING

// There are 2 different ways to pick the X and Y locations to probe:

//  - "grid" mode
//    Probe every point in a rectangular grid
//    You must specify the rectangle, and the density of sample points
//    This mode is preferred because there are more measurements.
//    It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive

//  - "3-point" mode
//    Probe 3 arbitrary points on the bed (that aren't colinear)
//    You must specify the X & Y coordinates of all 3 points

  #define AUTO_BED_LEVELING_GRID
  // with AUTO_BED_LEVELING_GRID, the bed is sampled in a
  // AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
  // and least squares solution is calculated
  // Note: this feature occupies 10'206 byte
  #ifdef AUTO_BED_LEVELING_GRID

    // set the rectangle in which to probe
    #define LEFT_PROBE_BED_POSITION 30
    #define RIGHT_PROBE_BED_POSITION 170
    #define BACK_PROBE_BED_POSITION 170
    #define FRONT_PROBE_BED_POSITION 30

     // set the number of grid points per dimension
     // I wouldn't see a reason to go above 3 (=9 probing points on the bed)
    #define AUTO_BED_LEVELING_GRID_POINTS 3


  #else  // not AUTO_BED_LEVELING_GRID
    // with no grid, just probe 3 arbitrary points.  A simple cross-product
    // is used to esimate the plane of the print bed

      #define ABL_PROBE_PT_1_X 170
      #define ABL_PROBE_PT_1_Y 170
      #define ABL_PROBE_PT_2_X 170
      #define ABL_PROBE_PT_2_Y 30
      #define ABL_PROBE_PT_3_X 30
      #define ABL_PROBE_PT_3_Y 30

  #endif // AUTO_BED_LEVELING_GRID


  #define PROBE_DOWN_ENTER 190
  #define PROBE_DOWN_EXIT  130
  #define PROBE_UP_ENTER    30
  #define PROBE_UP_EXIT     95
 
  // these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
  #define X_PROBE_OFFSET_FROM_EXTRUDER -30.825
    #define X_PROBE_OFFSET_RANGE_MIN -40
    #define X_PROBE_OFFSET_RANGE_MAX -20
  #define Y_PROBE_OFFSET_FROM_EXTRUDER -1.1
    #define Y_PROBE_OFFSET_RANGE_MIN -10
    #define Y_PROBE_OFFSET_RANGE_MAX 10
  #define Z_PROBE_OFFSET_FROM_EXTRUDER 3.2
    #define Z_PROBE_OFFSET_RANGE_MIN 0
    #define Z_PROBE_OFFSET_RANGE_MAX 10

     #define Z_RAISE_BEFORE_HOMING 4       // (in mm) Raise Z before homing (G28) for Probe Clearance.
                                        // Be sure you have this distance over your Z_MAX_POS in case

  #define XY_TRAVEL_SPEED 8000         // X and Y axis travel speed between probes, in mm/min

  #define Z_RAISE_BEFORE_PROBING 8   //How much the extruder will be raised before traveling to the first probing point.
  #define Z_RAISE_BETWEEN_PROBINGS 2  //How much the extruder will be raised when traveling from between next probing points

  //#define Z_PROBE_SLED // turn on if you have a z-probe mounted on a sled like those designed by Charles Bell
  //#define SLED_DOCKING_OFFSET 5 // the extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.

  //If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
  //The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
  // You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.

//  #define PROBE_SERVO_DEACTIVATION_DELAY 300


//If you have enabled the Bed Auto Leveling and are using the same Z Probe for Z Homing,
//it is highly recommended you let this Z_SAFE_HOMING enabled!!!

  #define Z_SAFE_HOMING   // This feature is meant to avoid Z homing with probe outside the bed area.
                          // When defined, it will:
                          // - Allow Z homing only after X and Y homing AND stepper drivers still enabled
                          // - If stepper drivers timeout, it will need X and Y homing again before Z homing
                          // - Position the probe in a defined XY point before Z Homing when homing all axis (G28)
                          // - Block Z homing only when the probe is outside bed area.

  #ifdef Z_SAFE_HOMING

    #define Z_SAFE_HOMING_X_POINT 103    // X point for Z homing when homing all axis (G28)
    #define Z_SAFE_HOMING_Y_POINT 100    // Y point for Z homing when homing all axis (G28)

  #endif

#endif // ENABLE_AUTO_BED_LEVELING

// {SD Patch} Start
// ###############################

// Model-independent endstop logic

#ifndef ENABLE_AUTO_BED_LEVELING
  #define Z_MIN_POS 0
#else
  #define Z_MIN_POS (-1*Z_PROBE_OFFSET_FROM_EXTRUDER)  //With Auto Bed Leveling, the Z_MIN MUST have the same distance as Z_PROBE
#endif

#define MANUAL_HOME_POSITIONS  // If defined, MANUAL_*_HOME_POS below will be used
#define MANUAL_Z_HOME_POS Z_MIN_POS

#if SOLIDOODLE_VERSION == 3
  #define X_MAX_POS 203
  #define X_MIN_POS 0
  #define Y_MAX_POS 200
  #define Y_MIN_POS 0
  #define Z_MAX_POS 200

// The position of the homing switches
  //#define BED_CENTER_AT_0_0  // If defined, the center of the bed is at (X=0, Y=0)
//Manual homing switch locations:
  #define MANUAL_X_HOME_POS 203
  #define MANUAL_Y_HOME_POS 200

#else //assume SD2
  #define X_MAX_POS 155
  #define X_MIN_POS 0
  #define Y_MAX_POS 150
  #define Y_MIN_POS 0
  #define Z_MAX_POS 150

 
// The position of the homing switches
  //#define BED_CENTER_AT_0_0  // If defined, the center of the bed is at (X=0, Y=0)
//Manual homing switch locations:
  #define MANUAL_X_HOME_POS 155
  #define MANUAL_Y_HOME_POS 150
#endif

#define X_MAX_LENGTH (X_MAX_POS - X_MIN_POS)
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)


//###############################
//{SD Patch} END

//// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0}  // set the homing speeds (mm/min)

// default settings

#define DEFAULT_AXIS_STEPS_PER_UNIT   {88,88,2268,138}  // default steps per unit for Ultimaker {SD Patch}
//#define AXIS_STEPS_NEGATIVE           {88,88,2268,138} // Step values to be used when travelling in the negative direction. Useful for threadless ball screws. Comment out if not needed
#define DEFAULT_MAX_FEEDRATE          {500, 500, 5, 45}    // (mm/sec) {SD Patch}
#define DEFAULT_MAX_ACCELERATION      {1200,1200,100,10000}    // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot. {SD Patch}

#define DEFAULT_ACCELERATION          1000    // X, Y, Z and E max acceleration in mm/s^2 for printing moves {SD Patch}
#define DEFAULT_RETRACT_ACCELERATION  1000   // X, Y, Z and E max acceleration in mm/s^2 for retracts {SD Patch}

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
// #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
// #define EXTRUDER_OFFSET_Y {0.0, 5.00}  // (in mm) for each extruder, offset of the hotend on the Y axis

// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK                20.0    // (mm/sec)
#define DEFAULT_ZJERK                 0.4     // (mm/sec)
#define DEFAULT_EJERK                 5.0    // (mm/sec)

//===========================================================================
//=============================Additional Features===========================
//===========================================================================

// Custom M code points
#define CUSTOM_M_CODES
#ifdef CUSTOM_M_CODES
  #define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
  #define Z_PROBE_OFFSET_RANGE_MIN -15
  #define Z_PROBE_OFFSET_RANGE_MAX -5
#endif


// EEPROM
// The microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
//define this to enable EEPROM support
#define EEPROM_SETTINGS //{SD Patch}
//to disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
// please keep turned on if you can.
#define EEPROM_CHITCHAT //{SD Patch}

// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 190 //{SD Patch}
#define PLA_PREHEAT_HPB_TEMP 70 //{SD Patch}
#define PLA_PREHEAT_FAN_SPEED 255        // Insert Value between 0 and 255

#define ABS_PREHEAT_HOTEND_TEMP 250 //{SD Patch}
#define ABS_PREHEAT_HPB_TEMP 105 //{SD Patch}
#define ABS_PREHEAT_FAN_SPEED 255        // Insert Value between 0 and 255

// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 190
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255   // Insert Value between 0 and 255

#define ABS_PREHEAT_HOTEND_TEMP 250
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255   // Insert Value between 0 and 255

//LCD and SD support
//#define ULTRA_LCD  //general LCD support, also 16x2
//#define DOGLCD  // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
  #define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define SD_CHECK_AND_RETRY // Use CRC checks and retries on the SD communication
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
//#define ULTIPANEL  //the UltiPanel as on Thingiverse
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000    // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click

// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL

// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
  #define REPRAP_DISCOUNT_SMART_CONTROLLER

// The GADGETS3D G3D LCD/SD Controller (blue PCB)
// http://reprap.org/wiki/RAMPS_1.3/1.4_GA … with_Panel
//#define G3D_PANEL

// The RepRapDiscount FULL GRAPHIC Smart Controller (quadratic white PCB)
// http://reprap.org/wiki/RepRapDiscount_F … Controller
//
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER

// The RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_detail … =1591_1626
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click

// The Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=pr … duct_id=53
// REMEMBER TO INSTALL LiquidCrystal_I2C.h in your ARUDINO library folder: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//#define RA_CONTROL_PANEL

//automatic expansion
#if defined(ULTIMAKERCONTROLLER) || defined(REPRAP_DISCOUNT_SMART_CONTROLLER) || defined(G3D_PANEL)
#define ULTIPANEL
#define NEWPANEL
#endif

// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 190
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255    // Insert Value between 0 and 255

#define ABS_PREHEAT_HOTEND_TEMP 250
#define ABS_PREHEAT_HPB_TEMP 105
#define ABS_PREHEAT_FAN_SPEED 255   // Insert Value between 0 and 255


#ifdef ULTIPANEL
//  #define NEWPANEL  //enable this if you have a click-encoder panel
  #define SDSUPPORT
  #define ULTRA_LCD
  #ifdef DOGLCD // Change number of lines to match the DOG graphic display
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 5
  #else
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 4
  #endif
#else //no panel but just lcd
  #ifdef ULTRA_LCD
  #ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 5
  #else
    #define LCD_WIDTH 16
    #define LCD_HEIGHT 2
  #endif   
  #endif
#endif
//I2C PANELS

//#define LCD_I2C_SAINSMART_YWROBOT
#ifdef LCD_I2C_SAINSMART_YWROBOT
  // This uses the LiquidCrystal_I2C library ( https://bitbucket.org/fmalpartida/new-l … /wiki/Home )
  // Make sure it is placed in the Arduino libraries directory.
  #define LCD_I2C_TYPE_PCF8575
  #define LCD_I2C_ADDRESS 0x27   // I2C Address of the port expander
  #define NEWPANEL
  #define ULTIPANEL
#endif

// PANELOLU2 LCD with status LEDs, separate encoder and click inputs
//#define LCD_I2C_PANELOLU2
#ifdef LCD_I2C_PANELOLU2
  // This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
  // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
  // (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file)
  // Note: The PANELOLU2 encoder click input can either be directly connected to a pin
  //       (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
  #define LCD_I2C_TYPE_MCP23017
  #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
  #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD
  #define NEWPANEL
  #define ULTIPANEL

  #ifndef ENCODER_PULSES_PER_STEP
    #define ENCODER_PULSES_PER_STEP 4
  #endif

  #ifndef ENCODER_STEPS_PER_MENU_ITEM
    #define ENCODER_STEPS_PER_MENU_ITEM 1
  #endif


  #ifdef LCD_USE_I2C_BUZZER
    #define LCD_FEEDBACK_FREQUENCY_HZ 1000
    #define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100
  #endif

#endif

// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
#ifdef LCD_I2C_VIKI
  // This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
  // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
  // Note: The pause/stop/resume LCD button pin should be connected to the Arduino
  //       BTN_ENC pin (or set BTN_ENC to -1 if not used)
  #define LCD_I2C_TYPE_MCP23017
  #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
  #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later)
  #define NEWPANEL
  #define ULTIPANEL
#endif

// Shift register panels
// ---------------------
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-l … connection
//#define SR_LCD
#ifdef SR_LCD
   #define SR_LCD_2W_NL    // Non latching 2 wire shift register
   //#define NEWPANEL
#endif

// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
#ifdef LCD_I2C_VIKI
  // This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
  // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
  // Note: The pause/stop/resume LCD button pin should be connected to the Arduino
  //       BTN_ENC pin (or set BTN_ENC to -1 if not used)
  #define LCD_I2C_TYPE_MCP23017
  #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
  #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later)
  #define NEWPANEL
  #define ULTIPANEL
#endif

#ifdef ULTIPANEL
//  #define NEWPANEL  //enable this if you have a click-encoder panel
  #define SDSUPPORT
  #define ULTRA_LCD
  #ifdef DOGLCD // Change number of lines to match the DOG graphic display
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 5
  #else
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 4
  #endif
#else //no panel but just LCD
  #ifdef ULTRA_LCD
  #ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 5
  #else
    #define LCD_WIDTH 16
    #define LCD_HEIGHT 2
  #endif
  #endif
#endif

// default LCD contrast for dogm-like LCD displays
#ifdef DOGLCD
# ifndef DEFAULT_LCD_CONTRAST
#  define DEFAULT_LCD_CONTRAST 32
# endif
#endif

// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN

// Temperature status LEDs that display the hotend and bet temperature.
// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not ass annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM

// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0

// M240  Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
// #define PHOTOGRAPH_PIN     23

// SF send wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX

// Support for the BariCUDA Paste Extruder.
//#define BARICUDA

//define BlinkM/CyzRgb Support
//#define BLINKM

/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas
**********************************************************************/

// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command

// Servo Endstops
//
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M206 command to correct for switch height offset to actual nozzle height. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
//#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles

#include "Configuration_adv.h"
#include "thermistortables.h"

#endif //__CONFIGURATION_H

30

Re: Ramps 1.4 with LCD and SD support

Yep a few problems I see in there, when I get in front of a PC I'll send screenshots.  Got a meeting so it'll be a few hours.

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

31

Re: Ramps 1.4 with LCD and SD support

Take your time my friend,  I have to head to work in a couple hours and I wont be able to get back on it until tomorrow afternoon anyways.

32

Re: Ramps 1.4 with LCD and SD support

wardjr wrote:

Yep a few problems I see in there, when I get in front of a PC I'll send screenshots.  Got a meeting so it'll be a few hours.

Hello Wardjr,
Just curious if you had time to take a look at the firmware?

Don

33

Re: Ramps 1.4 with LCD and SD support

I have not, at least not thoroughly enough as I'd like.  I'll probably have a little time in a couple of hours.  I know where the trouble issues are but need my laptop in front of me to provide you with the proper settings.  The other thing you could do is start fresh with a new download of the copy I linked.  Don't change any of the endstop logic on that version.  That'll eliminate close to 80% of the problems.

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

34

Re: Ramps 1.4 with LCD and SD support

I will do that, shall I leave the auto bed level, lcd, and sd support exactly as the firmware is when I download it? and only change the MoBo to 33? If I recalled when I did only that it came up the an error in the marlin ccp file when verifying.

35

Re: Ramps 1.4 with LCD and SD support

You can enable that stuff just leave the endstop stuff alone for now.

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

36

Re: Ramps 1.4 with LCD and SD support

Hello Wardjr,
I have uploaed the firmware as you said to without changing any endlogic. I do have a question though about the pins. My extruder and z axis still will no move. I was reading on Reprap rampswiki that the pins need to be configure as follows:
// For RAMPS 1.4
#define X_STEP_PIN         54
#define X_DIR_PIN          55
#define X_ENABLE_PIN       38
#define X_MIN_PIN           3
#define X_MAX_PIN           2

#define Y_STEP_PIN         60
#define Y_DIR_PIN          61
#define Y_ENABLE_PIN       56
#define Y_MIN_PIN          14
#define Y_MAX_PIN          15

#define Z_STEP_PIN         46
#define Z_DIR_PIN          48
#define Z_ENABLE_PIN       62
#define Z_MIN_PIN          18
#define Z_MAX_PIN          19

#define E_STEP_PIN         26
#define E_DIR_PIN          28
#define E_ENABLE_PIN       24

#define SDPOWER            -1
#define SDSS               53
#define LED_PIN            13

#define FAN_PIN            9

#define PS_ON_PIN          12
#define KILL_PIN           -1

#define HEATER_0_PIN       10
#define HEATER_1_PIN       8
#define TEMP_0_PIN          13   // ANALOG NUMBERING
#define TEMP_1_PIN          14   // ANALOG NUMBERING
With the version I downloaded from the included link, do I need to worry about this as it appears different from that is in the firmware. Or is this nothing to worry about?
Thanks

37

Re: Ramps 1.4 with LCD and SD support

When you select your board number all of that is supposed to be changed automatically.  That's really the main reason you need to choose a board.

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

38

Re: Ramps 1.4 with LCD and SD support

I figured that's what its suppose to do, I guess I just wasn't sure so I thought I ask just incase I was doing something incorrect. At this point with just the firmware change and no endstop logic done should I be able to manually move all 4 motors? I thought I would but like I said before z axis and extruder do not respond. I thought maybe the driver was bad but I can check the voltage at both steppers and they are set at what solidoodle says those motors should be at, 1.5 volts. I swap the drivers from x to ext or x to z and x still works but z and ext do not. If I hook the z or ext stepper to my x pins I can move them by activating x. So I do not think the motors or drivers are bad? Any thoughts on that?

39

Re: Ramps 1.4 with LCD and SD support

That's where we have an endstop problem at least for z.  The extruder won't move unless the hot end is up to temp.  Can you heat it up and check?

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

40

Re: Ramps 1.4 with LCD and SD support

Well that answers a lot, I did heat it up when I first hook everything up and it did move but I have not done that since the first day I started all this about 3 weeks ago sad. Never thought I would have withdraws from not using a machine, but I believe I do smile Ok I will verify the extruder moves once heated, if that works then I think I will stop worry about it until we figure out the end stops.
Thanks again

41

Re: Ramps 1.4 with LCD and SD support

The leveling prob is plugged into Z-MAX pins?
The lower endstop switch is plugged into Z-MIN pins?
That firmware isn't set up for that lower switch so it's going to be the auto level stuff that's gonna take a little thinking.  You might try with that lower switch unplugged just to see if you get motion.   That would help focus our efforts.

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

42

Re: Ramps 1.4 with LCD and SD support

Ok, I have to figure out why the extruder isn't heating up now first, I think its because I have a different thermistor that stock now and I haven't changed that in the firmware since I uploaded this version of it. After that I will unplug the lower switch and see what it does. And to verify, I should have the bed level switch hooked up to the Z-Max pins so it thinks that it is the Z endstop?

43

Re: Ramps 1.4 with LCD and SD support

Where else could you plug it in?  So I'm saying yes that's where it should go.
Your heat issue isn't because the the thermistor wasn't changed in firmware.  You need to remember to set that correctly but for now it doesn't matter.  Are you getting an error like max temp.  Check your thermistor wiring.

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

44

Re: Ramps 1.4 with LCD and SD support

No I am not getting a maxtemp error. The bed heats up and a red light comes on the board when I activate the bed, the extruder heater doesn't heat up and I get a flickering red light on the board when I activate the extruder. I will take a look to make sure the wires are firmly attached.

45

Re: Ramps 1.4 with LCD and SD support

No error, then focus on the heat cartridge wires and plug.
Is it giving a fairly accurate temp reading of room temp? 18-25 depending on the temp of the room.

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

46

Re: Ramps 1.4 with LCD and SD support

Yes it does show a good reading on both temp sensors of around 22. I think I need to swap the extruder heater wires to D9 instead of D10. I hooked it up according the reprap wiki, with that firmware it heated. I just check voltage on D10 when activated and it says 0 I check D9 and it shows about 11.9 volts when extruder heater activated. I'm switching it now.

47

Re: Ramps 1.4 with LCD and SD support

Report back

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

48

Re: Ramps 1.4 with LCD and SD support

Well I have something not correct. I hooked it up so its now hooked to Extrud 1 instead of extrude 0, and it heats, but hits maxtemp. I dont understand why except maybe the therm is on the wrong pins. I physically switch the extruder therm to the corresponding pins for Extrud 1 but it doesn't read anything then. So I switch back to extrude 0 and go into pin config and under board 33 there is not Extrudt0  set. I guess that's why I asked about the pin config for board 33.
I am getting frustrated with this board, and I pretty sure your just as frustraded as its hard to troubleshoot something when its not infront of you.
I am sorry for the mess.
Maybe I have my stuff hooked up as it is on RepRap wiki, but for the firmware I am using its not correct?
Let me know your thoughts.

49

Re: Ramps 1.4 with LCD and SD support

I think what I will do is ask jagowilson to configure firmware for you.  He's my go to when I run into strange issues like that.  Don't let it frustrate you, think of it as an opportunity to learn.  Not as though that'll make you feel any better or get your printer running wink
Either way we will figure it out and get you printing again.

Printit Industries Model 8.10 fully enclosed CoreXY, Chamber heat
3-SD3's & a Workbench all fully enclosed, RH-Slic3r Win7pro, E3D V6, Volcano & Cyclops Hot End
SSR/500W AC Heated Glass Bed, Linear bearings on SS rods. Direct Drive Y-axis, BulldogXL
Thanks to all for your contributions

50 (edited by sandcub1971 2015-12-07 05:22:41)

Re: Ramps 1.4 with LCD and SD support

I agree this is a great opportunity to learn. I have always been able to figure stuff out my self no matter what it is, programming a fully autonomous flight controller with GPS to using solidworks, but this.... OMG this printer will be the death of me smile its been a problem since I preordered it, received it, and opened it. Its as if its just a mash up of thoughts. I do want to thank you for the time you have spent working with me.

If your friend needs any info such as the previous firmare I ran as it was originally modded for the E3Dv6 and therms, or what hardware is actually in my printer please feel free to let me know. I will get it to you asap.

Thanks again, and I hope you have a good night